EFFECT OF CYCLOHEXIMIDE ON THE CATABOLISM OF LEVULINIC ACID TO CO₂ BY ETIOLATED LEAVES OF HORDEUM VULGARE

PIERRE J. LEVASSEUR and MERRILL L. GASSMAN

Department of Biological Sciences, University of Illinois at Chicago, Box 4348, Chicago, IL 60680, U.S.A.

(Received 26 October 1985)

Key Word Index—Hordeum vulgare; Gramineae; barley; biochemistry; levulinic acid; cycloheximide; chloramphenicol.

Abstract—When etiolated barley (Hordeum vulgare L. var. Larker) shoots are incubated with [4-14C]levulinic acid, they evolve 14CO₂. Cycloheximide inhibits this catabolism, and the effect is distinct from any effect this antimetabolite has on fatty acid oxidation or respiration. We suggest that a protein which is synthesized on 80 S ribosomes and which has a short half-life is necessary for levulinic acid catabolism to CO₂.

INTRODUCTION

Levulinic acid (LA), an inhibitor of δ -aminolevulinic acid (ALA)-dehydratase (EC 4.2.1.24), has been employed in a number of studies on the biochemistry of the greening process [1]. However, a potential problem in using LA in this capacity is that it is not metabolically inert; bacteria and yeast [2] as well as barley shoots [3] can metabolize this compound. In an accompanying paper [4], we report on the metabolism of $[4^{-14}C]LA$ in etiolated and greening barley shoots. The present study examines the effect of cycloheximide and chloramphenicol on the metabolism of $[4^{-14}C]LA$ to $^{-14}CO_2$ by etiolated barley shoots. We suggest that this catabolism is dependent on the synthesis of proteins on cytoplasmic ribosomes. A preliminary report on this work has appeared [5].

RESULTS AND DISCUSSION

The effect of cycloheximide (CHI) and chloramphenicol (CAM) on [4-14C]LA catabolism to ¹⁴CO₂ is shown in Table 1. Neither compound at the concentrations employed substantially influenced the

uptake of [14C]LA. CHI, but not CAM, inhibited 14CO₂ evolution from [4-14C]LA.

The specificity of the CHI effect was examined by incubating etiolated barley leaf segments with [1-14C]ncaproic acid (Cap) or [1,4-14C] succinic acid (Suc) in the presence or absence of the inhibitor. In both cases CHI reduced 14CO2 production by 12% (Table 1). Assuming that this represents the extent of respiratory inhibition by CHI, then the specific inhibition of this compound on LA catabolism to CO₂ was estimated to be about 47% (59% - 12%). Maximum inhibition was not observed until 3 hr after the addition of label despite the fact that the leaves were preincubated for 1 hr with the inhibitor (Fig. 1a). When CHI was administered 2 hr after [14C]LA, it began to exert an effect after the third hour (Fig. 1b). Inhibition became maximal by the fifth hour, i.e. 3 hr after addition of CHI, and reached about 24% (after correcting for the effect of CHI on respiration, 36% - 12%). The decline in the rate of 14CO2 evolution in the presence of CHI obeys first-order kinetics (Fig. 1, inserts).

These results suggest that a short-lived protein (half-life ca 4 hr) is necessary for CO₂ production from LA. This

Table 1. The effect of CAM and CHI on the metabolism of LA, caproic and succinic acids

	Label taken up		14CO ₂ evolved	
	DPM × 10 ⁻⁶	% of control	label taken up	- % of control
[4-14C]LA	3.586 ± 0.107*	100	0.0120 ± 0.0009	100
[4-14C]LA + CAM	3.496 ± 0.017	97.5	0.0114 ± 0.0010	95
[4-14C]LA + CHI	3.424 ± 0.045	95.5	0.00487 + 0.0002	40.6
[1-14C]Cap	7.800 ± 0.083	100	0.314 ± 0.011	100
[1-14C]Cap + CHI	7.924 ± 0.035	101.6	0.278 ± 0.008	88.5
[1,4-14C]Suc	4.255 ± 0.069	100	0.558 ± 0.001	100
[1,4-14C]Suc + CHI	3.954 ± 0.037	92.9	0.490 ± 0.009	87.8

^{*}S.e. for two to three determinations.

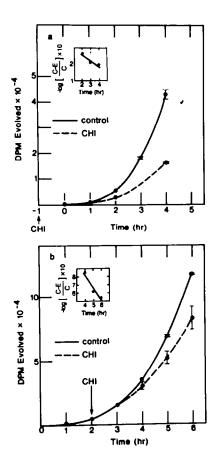


Fig. 1. The effect of CHI on the metabolism of [4-14C]LA to 14CO₂ by etiolated barley shoot segments incubated in the dark.

(a) Tissue was incubated for 1 hr with CHI prior to the addition of [4-14C]LA. (b) Tissue was incubated for 2 hr with [4-14C]LA prior to the addition of CHI. Inserts: the decline in the rate of CO₂ production after addition of CHI. The data are plotted as: the negative log of the amount of ¹⁴CO₂ produced in the absence of CHI (C) minus that in the presence of CHI (E) divided by C vs. time, beginning with the second hour after the addition of [¹⁴C]LA in (a) or CHI in (b). Values represent the mean of two determinations; s.e. are indicated with bars.

protein is apparently synthesized on cytoplasmic ribosomes.

EXPERIMENTAL

Growth and preparation of plant tissue. Seeds of Hordeum vulgare L. var. 'larker' (Field Seed Farm; Byron, MN) were germinated and grown in darkness for 7 days and then the apical 5 cm of the shoots was harvested according to the method of Duggan et al. [3]. One gram samples of tissue were placed into 125-ml Erlenmeyer flasks containing 0.1 M Pi buffer (pH 3.0) and the flasks stoppered. All manipulations involving living material were performed under a dim green safelight.

Incubation with chloramphenicol (CAM) and cycloheximide (CHI). In one experiment the tissue was preincubated for 1 hr in darkness in the presence of either 450 μg/ml CAM or 50 μg/ml CHI. The radioisotope, either [4-1⁴C]LA, [1-1⁴C]Cap or [1,4-1⁴C]Suc, was then added to the incubation medium, bringing the final vol. to 1.0 ml. Respired 1⁴CO₂ was measured at the designated times as previously described [3].

In another experiment, tissue was incubated with [4-14C]LA for 2 hr prior to the addition of CHI. The incubation was then continued for an additional 4 hr. Respired ¹⁴CO₂ was monitored throughout the incubation.

Biochemicals. [4-14C]LA (20 mCi/mMol) was purchased from Amersham Corp., Arlington Hts., IL and purified by TLC [4]. [1-14C]Cap (19 mCi/mMol) and [1,4-14C]Suc (51 mCi/mMol) were obtained from Research Products International Corp., Mt. Prospect, IL. CHI (Acti-dione) was a gift from the Upjohn Pharmaceutical Co., Kalamazoo, MI. CAM, sodium succinate salt (Chloromycetin), was a gift from Parke-Davis & Co., Detroit, MI.

Acknowledgements—This research was supported by National Science Foundation Grant PCM 79-01605 (to M.L.G.). The study formed part of a thesis submitted by P.J.L. to the Graduate College of the University of Illinois at Chicago in partial fulfillment of the requirements for the M.S. degree.

REFERENCES

- 1. Beale, S. (1978) Annu. Rev. Plant. Physiol. 29, 95.
- 2. Harada, M. (1971) Nippon Nogei Kagaku Kaishi 45, 89.
- Duggan, J. X., Meller, E. and Gassman, M. L. (1981) Plant Physiol. 68, 802.
- Levasseur, P. J. and Gassman, M. L. (1986) Phytochemistry (in press).
- 5. Levasseur, P. and Gassman, M. (1981) Plant Physiol. 67, S-83.